Real0ne
Posts: 21189
Joined: 10/25/2004 Status: offline
|
quote:
ORIGINAL: DomKen Your theory seems to fail several basic tests. This higher dimension 'velcoity space' is an unnecessary entity and therefore violates Occam's Razor. You need your theory to explain some observation that other simpler, less entities, theories don't to make adding the extra dimension valid. This brings us to the much more important problem of testing. Your theory needs to make a prediction at odds with present theory which others can then test and verify whether your theory correctly or incorrectly predicted the outcome. Unfortunately I don't see anything predicted by your theory and certainly not anything contrary to the predictions of more widely accepted theories. This failure is quite similiar to what is keeping string theory from wide acceptance. We simply have no way to determine whether it is correct or not. Science by Razor alone? The aforementioned problem of underdetermination poses a serious obstacle to applications of the scientific method. Formulating theories and selecting the most promising ones is impossible without a way of choosing among an arbitrarily large number of theories, all of which fit with the evidence equally well. If any one principle could single-handedly reduce all these infinite possibilities to find the one best theory, at first glance one might deduce that the whole of scientific method simply follows from it, and thus that it alone would be sufficient to power the whole process of hypothesis formulation and rejection scientists undertake. Occam's razor has become a basic tool for those who follow the scientific method,[citation needed] and is by far the most popular tool invoked to justify one underdetermined theory over another.[citation needed] However, there is more to the scientific method than analyzing data - processes of collecting data, pre-existing mind frames, well-accepted hypotheses and even axioms that may or may not actually correspond with reality, and the vague nature of scientific community consensus all play a very significant role in the process of scientific inquiry, perhaps more significant in practice than many of the finer points of inductive logic (Thomas Kuhn outright rejected induction as the main driving force of the scientific method altogether in favor of paradigm shifts). Aside from that, the common statement of "the simplest explanation tends to be the best" cannot be properly evaluated for scientific purposes unless sharpened into a particular brand by a significant degree of formal precision; it is certainly possible to formulate a set of ground rules for the procedure and operation of such a razor that will be utterly useless or sorely lacking when tackling a particular set of data (see below, "probability theory"). Occam's razor is not equivalent to the idea that "perfection is simplicity". Albert Einstein probably had this in mind when he wrote in 1933 that "The supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience" often paraphrased as "Theories should be as simple as possible, but no simpler." It often happens that the best explanation is much more complicated than the simplest possible explanation because it requires fewer assumptions. In light of this, the popular rephrasing of the razor - "The simplest explanation is the best one" - can lead to a gross oversimplification when the word simple is taken at face value. There are two senses in which Occam's razor can be seen at work in the history of science. One is ontological reduction by elimination and the other is by intertheoretic competition. In the former case the following are examples of reduction by elimination: The impetus of Aristotelian Physics, the angelic motors of medieval celestial mechanics, the four humors of ancient and medieval medicine, demonic possession as an explanation of mental illness, phlogiston theory from premodern chemistry, and vital spirits of premodern biology. In the latter case there are three examples from the history of science where the simpler of two competing theories each of which explains all the observed phenomena has been chosen over its ontologically bloated competitor: the Copernican heliocentric model of celestial mechanics over the Ptolemaic geocentric model, the mechanical theory of heat over the Caloric theory, and the Einsteinian theory of electromagnetism over the luminiferous aether theory. - In the first example, the Copernican model is said to have been chosen over the Ptolemaic due to its greater simplicity. The Ptolemaic model, in order to explain the apparent retrograde motion of Mercury relative to Venus, posited the existence of epicycles within the orbit of Mercury. The Copernican model (as expanded by Kepler) was able to account for this motion by displacing the Earth from the center of the solar system and replacing it with the sun as the orbital focus of planetary motions while simultaneously replacing the circular orbits of the Ptolemaic model with elliptical ones. In addition the Copernican model excluded any mention of the crystalline spheres that the planets were thought to be embedded in according the Ptolemaic model. In a single stroke the Copernican model reduced by a factor of two the ontology of Astronomy.
- According to the Caloric theory of heat, heat is a weightless substance that can travel from one object to another. This theory arose from the study of cannon boring and the invention of the steam engine. It was while studying cannon boring that Count Rumford made observations that conflicted with the Caloric theory and he formulated his mechanical theory to replace it. The Mechanical theory eliminated the Caloric and was ontologically simpler than its predecessor.
- During the 19th century, physicists believed that light required a medium of transmission much as sound waves do. It was hypothesized that a universal aether was such a medium and much effort was expended to detect it. In one of the most famous negative experiments in the history of science, the Michelson-Morley experiment failed to find any evidence of its existence.
Then when Einstein constructed his theory of special relativity without any reference to the Aether this subsequently became the accepted view, thus providing another example of a theory chosen in part for its greater ontological simplicity. http://en.wikipedia.org/wiki/Occam's_Razor unfortunately simplicity, (especially over simplicity), and ignorance, are often kizzin cuzinz
< Message edited by Real0ne -- 7/10/2007 8:41:16 AM >
_____________________________
"We the Borg" of the us imperialists....resistance is futile Democracy; The 'People' voted on 'which' amendment? Yesterdays tinfoil is today's reality! "No man's life, liberty, or property is safe while the legislature is in session
|